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Introduction

Vector Autoregressive (VAR) models are quite simple time series models
and — in their structural form — the main tools for macroeconomic
analysis (e.g. policy, sources of fluctuations, etc.).

Are they equipped to warrant causal claims?
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Outline

I VAR (and SVAR) models

I Problem of identification

I Structural causal models and causal discovery
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The Vector Autoregressive (VAR) model

Given a vector yt of k variables:

yt = µ+ A1yt−1 + A2yt−2 + . . .+ Apyt−p + ut

where Ai (i = 1, . . . , p) are (k × k) matrices;

ut is a (k × 1) vector of white-noise error terms (residuals or forecast
errors), and E (utu′t) = Σu;

µ is a (k × 1) vector of constants (possibly including a deterministic
trend).
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The Structural Vector Autoregressive (SVAR) model

The SVAR model provides a more precise description of a data
generating process:

B0yt = η + B1yt−1 + B2yt−2 + . . .+ Bpyt−p + εt

where Bi (i = 0, . . . , p) are (k × k) matrices of structural coefficients;

εt is a (k × 1) vector of white-noise structural shocks, and E (utu′t) = Σu;

η is a (k × 1) vector of constants (possibly including a deterministic
trend).
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Identifying a SVAR from a VAR

From VAR to SVAR model:

yt = µ+ A1yt−1 + . . .+ Apyt−p + ut (1)

B0yt = B0(µ+ A1yt−1 + . . .+ Apyt−p + ut) (2)

B0yt = η + B1yt−1 + . . .+ Bpyt−p + εt (3)

Relation between reduced-form residuals and structural shocks:

ut = B−1
0 εt (4)

From estimation of (1) one can get (3) only by knowing B−1
0 (quite

difficult) or under specific assumptions.

There is indeed a problem of identification.

But what does a SVAR model tell us about causality?
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Note on identification

Note that a problem of causal inference is a problem of identification, but
that not all the problems of identification are problems of causal
inference.

This depends very much on the nature of the structure to be identified.

A structure is causal if it allows to predict the effects of interventions.
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Identification and causality

Peters’s et al. (2017) definition of intervention distribution: given
X = X1, . . . ,Xp and a Directed Acyclic Graph (DAG) over X, let

P(x1, . . . , xp|do(Xj = p̃(xj))) :=

p∏
i 6=j

P(xi |xPAi )p̃(xj)

Is the SVAR model a structure that allows to predict the effects of
interventions?

To answer this question, let us first check how such structures are
formalized in the literature on causal discovery.
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Structural Causal Model

SCMs are key to formalize causal structures.

Definition by Peters et al. (2017):

A SCM C := (S,PN) consists of:

(i) a set A of k assignments

Xj := fj(PAj ,Nj) j = 1, . . . , k

where PAj ⊆ {X1, . . . ,Xk}\{Xj} (parents of Xj);

(ii) a joint distribution PN = P(N1) · . . . · P(Nk)

A causal graph G is obtained by creating one vertex for each Xj and
drawing Xi −→ Xj if Xi ∈ PAj .
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X1 := f1(X3,N1)

X2 := f2(X1,N2)

X3 := f3(N3)

X4 := f4(X2,X3,N4)

X1
- X2

6

X3 X4
-

?

# R-code snippet 1
# generate a sample from the SCM distribution
set.seed(7)
X3<-runif(1000)-0.5
X1<-2*X3 + rnorm(1000)
X2<- (0.5*X1)^2 + rnorm(1000)^2
X4<-X2 + 2*sin(X3 + rnorm(1000))
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Causal discovery

The literature on causal discovery (e.g. Spirtes et al. 2000, Pearl 2009,
Peters et al. 2017) has developed several algorithms to learn a causal
graph G (or a set of observational equivalent graphs) from observational
data:

I constraint-based causal discovery (i.e. based on conditional
independence tests)

e.g. PC algorithm, FCI algorithm (Spirtes et al. 2000)

I causal discovery based on specific assumptions about the SEM

e.g. LiNGAM (Shimizu et al. 2006), which is based on
ICA/Non-Gaussianity; RESIT (Peters et al. 2014), which is
based on nonlinearity.
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SCM for time series

Is a SVAR a SCM?

I Yes: a SVAR with independent shocks εt can be formalized as a
linear SCM and one can associate to it a full-time graph.
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Full time graph (example)
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(Note: there are algorithms — cf. Runge et al. 2017; Entner-Hoyer 2010 — that try

to learn a full-time graph skipping the SVAR)
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SCM for time series (cont’d)

Is a SVAR a SCM?

I Yes: a SVAR with independent shocks εt can be formalized as a
linear SCM and one can associate to it a full-time graph.

I No: it is not guaranteed to remain stable only under types of
intervention (macroeconomist’s view — cf. so-called Lucas’s
critique)
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Impulse Response Function Analysis

Wold decomposition (inverting the autoregressive part):

(I− A1L− . . .− ApL
p)yt = ut

yt = (I− A1L− . . .− ApL
p)−1ut =

∞∑
j=0

Φjut−j

where Φ0 = I , Φi =
∑i

j=1 AjΦi−j for i = 1, 2, . . .

yt =
∞∑
j=0

Φjut =
∞∑
j=0

ΦjB−1
0 εt =

∞∑
j=0

Ψjεt

The elements of Ψj are the impulse response functions:

∂yt+j

∂εt
= Ψj
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Example

εe → p εy → p εp → p

εe → y εy → y εp → y

εe → e εy → e εp → e
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Note on the Wold decomposition:
The Wold decomposition

yt = (I − A1L− . . .− ApL
p)−1ut

is possible only under stability, that is if

detA(z) = det(I − A1z − . . .− Apz
p) 6= 0 for z ∈ C, |z | ≤ 1.

But in general (even with non-stationary variables), the forecast error
associated with an h-step forecast is:

yt+h − yt+h|t = ut+h +Φ1ut+h−1 + . . .+Φh−1ut+1.

Thus we have:

∂yt+j

∂ut
= Φj ;

∂yt+j

∂εt
= ΦjB = Ψj (IRF)
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Back to the identification problem...

Identification of a SVAR model reduces to the problem of finding the
“right” mixture of ut :

B0ut = εt or ut = B−1
0 εt

Main assumption:

E [εtε
′
t ] = I , which implies that E [utu′t ] = B−1

0 (B−1
0 )′
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SVAR Identification methods

1. Choleski decomposition of E [utu′t ].

2. A priori zero restrictions on B0

3. Long-run restrictions.

4. Sign restrictions.

5. Graphical causal discovery applied on ut .

6. Independent component analysis applied to ut

7. External instruments

8. Heteroskedasticity

9. ...
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Structural VAR

Alternative SVAR formulations...

B0yt = B1yt−1 + B2yt−2 + . . .+ Bpyt−p + εt (1)

yt = A1yt−1 + A2yt−2 + . . .+ Apyt−p + B−1
0 εt (2)

G0yt = G1yt−1 + G2yt−2 + . . .+ Gpyt−p + Fεt (3)

...corresponding to different causal structures, for example:

y1t y2t y3t y1t y2t y3t y1t y2t y3t- - - -

ε1t ε2t ε3t ε1t ε2t ε3t ε1t ε2t ε3t
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Some concluding remarks /queries

I SVAR identification for causal discovery or causal discovery for
SVAR identification?

I A linear SVAR is not credible that remains invariant to the types of
interventions studied in the causal discovery literature (e.g.
systematic interventions).

I More work to be done to enrich the possibility of representing causal
structures + interventions in a SVAR: not only nonlinearity, but also
more complex relations between shocks and structures, etc.
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